Assessment of the tumor characteristics with imaging

Young Kon Kim, M.D.

Departments of Radiology and Center for Imaging Science,
Samsung Medical Center
Sungkyunkwan University School of Medicine, Seoul, Korea
1. Diagnosis of HCC
 - Multistep hepatocarcinogenetic pathway
 - ECS agent, Kupffer cell imaging, Dual agent (Gd-EOB-DTPA)
 Diffusion-weighted imaging

2. D/Dx Cirrhosis-associated hepatocellular nodules (DN)
 Mass-forming cholangiocarcinoma
 Focal nodular hyperplasia
Liver MRI protocols

- Chemical shift information: Dual GRE, IDEAL, mDixon
- T2 information: SSFSE, FSE, STIR
- pre- & post-contrast information: LAVA/THRIVE/VIBE, Water image IDEL, Water image mDixon
- Diffusion information: DWI low b-value, DWI high b-value, ADC
Three parallel processes during carcinogenetic pathway

1. The progressive sinusoidal capillarization with an increase in number of unpaired A
 ⇒ Arterial hypervascularization of HCC : ECS agent (Gd)

2. The progressive nodular depletion of Kupffer cells
 ⇒ Hyperintensity on SPIO-enhanced T2- & T2* WI

3. The progressive loss of biliary polarization of the hepatocyte & the derangement of the microscopic secretory structure
 ⇒ Hypointensity on hepatocyte phase imaging (MN-DPDP, Gd-BOPTA, Gd-EOB-DTPA)
Hemodynamic changes during hepatocarcinogenesis

- Dr. Matsui 0
Sequential increase of expression of CD34 positive sinusoids and α-SMA positive unpaired arteries (Nakamura k, Zen Y, Matsui 0, et al. Human Pathol. 2007)

Double staining of CD34 (blue) & α-SMA (brown)

<table>
<thead>
<tr>
<th>Spotty</th>
<th>Localized</th>
<th>Diffuse</th>
<th>Diffuse, intense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysplastic nodule</td>
<td>early HCC</td>
<td>Classic HCC</td>
<td></td>
</tr>
</tbody>
</table>
Multi-step changes of drainage vessels during hepatocarcinogenesis

(Kitao A, Zen Y, Matsui O, Nakanuma N. Radiology 2009;252;605)
Drainage blood flow from a hypervascular encapsulated HCC (connections between tumor blood sinusoids & surrounding portal venules).

VS

Early HCC

Hypervascular HCC

Overt HCC

Efremidis SC Eur Radiol 2007; 17

Courtesy of Dr. Matsui O
Moderately differentiated HCC with fibrotic capsule
Vaguely nodular

Distinctly nodular

Early HCC

Distinctly nodular
Stepwise Hepatocarcinogenesis and Changes of Intranodular Blood Supply

- Portal venous supply
- Hepatic arterial supply
- Abnormal arterial supply

RN
Low DN
High DN
Early HCC
Well HCC
Moderately HCC

(Hayashi M, Matsui O, et al. AJR 172: 969-976, 1999)
Stepwise Hepatocarcinogenesis and Changes of Intranodular Blood Supply

- Portal venous supply
- Hepatic arterial supply
- Abnormal arterial supply

RN, Low DN, High DN, Early HCC, Well HCC, Moderately HCC
Dynamic CT in an Early HCC
Dynamic MRI in an Early HCC
Multi-step Hepatocarcinogenesis
Dynamic CT in High grade DN
Comparison of morphologic features in dysplastic nodules & early HCC

<table>
<thead>
<tr>
<th>Morphology</th>
<th>Low-grade DN</th>
<th>High-grade DN</th>
<th>Early HCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clonelike populations</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Nuclear hyperchromasia</td>
<td>Absent</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Irregularity of nucleus</td>
<td>Absent</td>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td>Pseudoglands</td>
<td>Absent</td>
<td>Frequent</td>
<td>Frequent</td>
</tr>
<tr>
<td>Increased cell density</td>
<td>> 2 times</td>
<td>2-3 times</td>
<td>2-3 times or more</td>
</tr>
<tr>
<td>Number of cells thick</td>
<td>1-2</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Reticulin framework</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal or decreased</td>
</tr>
<tr>
<td>Stromal invasion</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Fatty change</td>
<td>Rare or absent</td>
<td>Occasional</td>
<td>30-40%</td>
</tr>
<tr>
<td>Unpaired artery</td>
<td>Rare or absent</td>
<td>Frequent</td>
<td>Present</td>
</tr>
</tbody>
</table>
Fat-containing Well Diff-HCC
HCC with Fatty metamorphosis

1 year F/U
Advanced HCC with Fat component
Arterial-only enhancing lesion

- **Jeong YY et al.** Small (<20 mm) enhancing hepatic nodules seen on arterial phase MR imaging of the cirrhotic liver: clinical implications. *AJR* 2002;178:1327-34.

- **Holland AE, et al.** Importance of small (< or = 20-mm) enhancing lesions seen only during the hepatic arterial phase at MR imaging of the cirrhotic liver: evaluation and comparison with whole explanted liver. *Radiology.* 2005;237:938-44.
Trans-sinusoidal route

ex) Liver cirrhosis, HV thrombosis

PV

Vasa vasorum

Peribiliary plexus

Liver cirrhosis, HV thrombosis
Added diagnostic value of T2-weighted MR imaging to gadolinium-enhanced three-dimensional dynamic MR imaging for the detection of small hepatocellular carcinomas

Kim YK EJR 2008
MRI appearance of wd-HCC

<table>
<thead>
<tr>
<th></th>
<th>T2WI</th>
<th>Fat sat T2WI</th>
<th>In-phase T1WI</th>
<th>Opp-phase T1WI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperintense</td>
<td>12</td>
<td>8</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Isointense</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Hypointense</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>31</td>
<td>33</td>
<td>26</td>
</tr>
</tbody>
</table>

- **18 (54.5%)** of wd HCC: hyperintense on T2 & API
Well-differentiated HCC
T1WI –High/ T2WI-Low
Three parallel processes during carcinogenetic pathway

1. The progressive sinusoidal capillarization with an increase in number of unpaired A
 ⇒ Arterial hypervascularization of HCC : ECF agent (Gd)

2. The progressive nodular depletion of Kupffer cells
 ⇒ Hyperintensity on SPIO-enhanced T2- & T2* WI

3. The progressive loss of biliary polarization of the hepatocyte & the derangement of the microscopic secretory structure
 ⇒ Hypointensity on hepatocyte phase imaging (MN-DPDP, Gd-BOPTA, Gd-EOB-DTPA)
RES-targeted agents

SPIO: Ferumoxides, Ferucarbotran (Resovist®)
Uptaked by Kupffer cell & macrophage
T2 shortening & susceptibility effect
Hypovascular nodule on cirrhosis

Kim YK, et al JCAT 2007
Well differentiated HCC
1.8cm sized HCC

Arterial phase

HBP (20m)
Sonazoid-enhanced US: HCC

Arterial phase

Delayed phase

Post-vascular Kupffer phase
SPIO: limitation in wd- HCC
Dual Imaging
Dynamic & Hepatocyte imaging

Bolus injection

GD-EOB-DTPA

PreT2
AP
PP
3 min
Post T2

Hepatocyte imaging

20 min

Kim YK, et al JMRI 2009
HCC: MDCT vs Gd-EOB-DTPA

Kim YK. JCAT 2009
HCC: Gd-DTPA vs Gd-EOB-DTPA

Kim YK. Br J Radiol 2010
Detection of Small Hepatocellular Carcinoma
Can Gadoxetic Acid-Enhanced Magnetic Resonance Imaging Replace Combining Gadopentetate Dimeglumine-Enhanced and Superparamagnetic Iron Oxide-Enhanced Magnetic Resonance Imaging?

Kim YK Invest Radiol 2010

Gd-DTPA 3 min SPIO T2*WI

Gd-EOB-DTPA 3 min Wd- HCC 20min
G1 HCC + HGDN

Diagnostic discrepancy of early hepatocellular carcinoma between Japan and West

Masamichi Kojiro

Hepatology Research 2007; 37 (Suppl. 2): S121–S124
HCC, GI, Bile stasis

6-15% OATP8 overexpression, probably due to some genetic alteration

- Matsui O
FNH-Like nodule

Arterial phase

Hepatobiliary phase

courtesy of DR. Mortel KJ

Ring-like enhancement of focal nodular hyperplasia with hepatobiliary-phase Gd-EOB-DTPA-enhanced magnetic resonance imaging: radiological-pathological correlation

OATP5 expression
DWI: Stejskal and Tanner (1965)

Water diffusion is observed as signal loss.
Biological correlates of Diffusion-weighted MRI

Apparent diffusion
Reflects:
- Cell membrane integrity
- Cellular density
- Macromolecules
- Microstructural organization
- Fluid homeostasis
- Microcapillary function
Free fluids exhibit a linear relationship with increasing B-value and tissue signal attenuation.

Cellular tissues show less signal attenuation at higher B-values.

Log of signal intensity is plotted against B-value for vascular, free fluids, and solid tissue conditions.
DWI

HCC

b=0

b=100

b=800

ADC map

Hemangioma
Utility of Diffusion-Weighted MRI in Distinguishing Benign and Malignant Hepatic Lesions

Bachir Taouli, MD

Powered by tremendous advances in image quality over the past few years, diffusion-weighted (DW) liver parenchyma, as opposed to benign nonsolid lesions, such as liver cysts and hemangiomas, with ADC of malignant...
Improved Sensitivity by Combining Gadoxetic acid-enhanced MR Imaging and Diffusion-weighted Imaging for Detecting Small (≤ 2.0 cm) Hepatocellular Carcinoma

Park MJ, Kim YK. Radiology 2012 Sept
HCC: AP- iso / HBP- iso/ DWI-high
Categorization of HCC and benign hepatocellular nodules according to the findings on gadoxetic acid MRI and DWI

Park MJ, Kim YK. *Acta Radiol* 2013 in press
High grade dysplastic nodule
Predicting factor for progressing to Hypervascular HCC
Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: Potential of diffusion-weighted imaging in helping predict progression to hypervascular HCC

Tumor characterization with Gd-EOB-DTPA & DWI
Mass-forming Cholangiocarcinoma

Kim YK. Eur Radiol. 2008
Intrahepatic Mass-forming Cholangiocarcinomas: Enhancement Patterns at Multiphasic CT, with Special Emphasis on Arterial Enhancement Pattern—Correlation with Cytology

Kim SA, Lee JM, Radiology 2011
Target sign on DWI: ICC

Park HJ, Kim YK, Abd imaging 2013 in press
Noncontrast MRI:
DWI & Blood Oxygen Level Dependent (BOLD) MRI
Hypovascular cholangiocarcinoma
Conclusion

- Combination of Gd-EOB-DTPA and DWI
 - Hemodynamic information, hepatocyte uptake, tissue diffusivity
 - Detection & characterization of HCC
 (differentiation from cholangiocarcinoma & FNH)
 D/Dx Early HCC vs Dysplastic nodule?

- Noncontrast MR protocol: DWI, BOLD
 - Alternative tool for patients with renal dysfunction
감사합니다