HCC Stereotactic Body Radiotherapy: A Multifaceted Approach

Laura Dawson
Radiation Medicine Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario
Disclosures

• Licensing agreement from Raysearch, paid to institution

• Advisory board: Merck ongoing
• Advisory board: SIRTEX 2016

• Research funding from Merck, paid to institution
Stereotactic Body Radiotherapy, SBRT

- Very conformal dose distribution
- Highly potent doses
- High dose per fraction
- Motion management
- Image guidance (‘stereotactic’)
- Few number of fractions (~1-6)

- Convenient, efficient, non-invasive
- Widely available
- SBRT techniques may be used for any fractionation
Typical HCC SBRT Plan

- Tumor dose often limited by:
 - Liver
 - Duodenum, bowel

- Strong need for advanced RT techniques
 - Individualized doses
 - Breathing motion management
 - Multi-phasic + multi-modality imaging
 - IGRT

Unpublished data provided by L. Dawson
Biologic Rationale for SBRT/Hypofractionation

• High dose/fraction specific effects
 – Preclinical data
 – Threshold ~ 5-8 Gy/fraction

• Postulated mechanisms of RT injury
 • Ablative direct cell kill
 • Endothelial target (Fuks)
 • Immune
 – RT increases tumor Ag-specific immune response ^*
 • Abscopol effect
 – Local therapy causes systemic response
 – Elusive in practice

RT has a potential important role to play in the treatment of HCC across all stages.
Early stage HCC, unsuitable for standard curative therapies

- 78 year old lady with single HCC, Hep C
- Laparotomy
 - Resection aborted due to cirrhosis
 - Decompensation post-op
- 8 weeks post op
 - Improving, but not at baseline
 - PS 2, Child Pugh B8
 - Growing HCC (4.8 cm)
SBRT 45 Gy in 5 #: no progression at month 24

Barry, Wei, Knox, Dawson, JCO Grand Rounds, Jan 2016
HCC is a RT sensitive tumor

- No dose response for HCC (33-54 Gy in 3-5 fractions)
- 3 year local control 86%

AAPM Consensus TCP project, Ohir, Dawson, Tome

- Pooled analysis from 5 trials
- n = 431
SBRT: Korean Registry

- N=93 HCC patients (26% CP B)
 - All refractory or unsuitable for TACE
- Dose: 30 - 40 Gy in 3- 4#
 - Size: median 2 cm (1-6 cm)
 - Improved local control for smaller tumors (100% < 2cm, 93% 2-3cm, 76% 3-6)
- Toxicity: Decline in CP score in 9.7% (gr 5, n=1 CP B pt)

3 yr local control 92% 3 yr survival 54%

Yoon, PLOS 2013
Japanese Retrospective Series-HCC SBRT

- N=221 (~84% T1) HCC patients (CP A:B=178:27)
 - 56–61% received TACE < 3 months prior to SBRT
- Dose: 40 Gy in 5#
 - 35 Gy: for CP B, and so < 20% liver ≥20Gy, n=48
 - Size: median 2.7 cm (35 Gy), 2.4 cm (40 Gy), max 5.0 cm
 - No sign. differences in outcomes for 35 vs 40 Gy
- Toxicity: Decline in CP score ~10% (gr 5, n=2 CP B pts)

 3 yr local control 91%
 3 yr survival 70%
French Study: HCC SBRT

- N=77 (median size 2.4 cm)
- SBRT: 45 in 3 fractions
- Local control: 1 and 2 years 99%
- Survival: 1 and 2 years: 82% and 56%
 - CP B worse survival
- 8% with liver toxicity < 6 months

Huertas A et al. Radiother Oncol. 2015;115(2):211–6
Indiana Phase II HCC Study

- 60 pts with HCC, 87% T1N0 (unsuitable for transplant)
 - Median volume 32cc (range 2–107)
- Dose: 48 Gy in 3# (CP A) or 40 Gy in 5# (CP B)
- Factors associated with survival:
 - CP class, HCC volume, liver toxicity and transplant (after downstaged) significant factors

<table>
<thead>
<tr>
<th></th>
<th>Child Pugh A</th>
<th>Child Pugh B</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=60</td>
<td>N=39</td>
<td>N=21</td>
</tr>
<tr>
<td>6 month local control</td>
<td>92%</td>
<td>88%</td>
</tr>
<tr>
<td>Med survival</td>
<td>51 mo</td>
<td>22 mo</td>
</tr>
<tr>
<td>3 year survival</td>
<td>62%</td>
<td>24%</td>
</tr>
<tr>
<td>Med PFS</td>
<td>33 mo</td>
<td>17 mo</td>
</tr>
<tr>
<td>Liver toxicity</td>
<td>28%</td>
<td>56%</td>
</tr>
</tbody>
</table>

Abstract #257 presented at: ASTRO, San Antonio, 18–21 October 2015
Can RT be used safely in Child-Pugh B/C pts?

- Toronto review 1/2004-7/2012, n=40
 - N=11 bridge to liver transplant pts excluded
 - N=29 treated with definitive SBRT
 - 14 on prospective study (< 10 cm, < CP B9)
 - 76% portal vein tumor thrombosis
 - 69% Child Pugh B7
 - Median AFP: 4491 (0-94,921)
 - Median HCC volume 133 cc
- Median survival: 7.9 months (2.8 – 15.1 mo)
- Prognostic factors on MVA
 - Child Pugh B7 vs other (med OS 8.4 vs. 2.8 mo)
 - AFP < 4491 (correlated with disease burden)

Culleton S,… Dawson, Radiat Oncol 2014
Meta-analysis (5204 patients)

1 Year Survival

Particle RT 5 year survival: 37%

SBRT 5 year survival 31%
Meta-analysis (5204 patients)

≥ Grade 3 Toxicity

<table>
<thead>
<tr>
<th>Acute toxicity</th>
<th>Included study</th>
<th>Events</th>
<th>Total</th>
<th>Events rate (95%CI)</th>
<th>I^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>14</td>
<td>21</td>
<td>830</td>
<td>3.1% (1.3–7.6%)</td>
<td>73.8</td>
<td>–</td>
</tr>
<tr>
<td>SBRT</td>
<td>19</td>
<td>59</td>
<td>1164</td>
<td>4.9% (3.0–8.1%)</td>
<td>66.8</td>
<td>0.19</td>
</tr>
<tr>
<td>CRT</td>
<td>10</td>
<td>111</td>
<td>995</td>
<td>9.9% (6.0–16%)</td>
<td>75.1</td>
<td>0.014</td>
</tr>
<tr>
<td>Bone marrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>14</td>
<td>40</td>
<td>805</td>
<td>5.1% (1.9–12.7%)</td>
<td>84.3</td>
<td>–</td>
</tr>
<tr>
<td>SBRT</td>
<td>11</td>
<td>23</td>
<td>644</td>
<td>4.9% (3.4–7.2%)</td>
<td>0</td>
<td>0.47</td>
</tr>
<tr>
<td>CRT</td>
<td>12</td>
<td>26</td>
<td>1015</td>
<td>6.1% (4.3–8.8%)</td>
<td>63.5</td>
<td>0.36</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>16</td>
<td>68</td>
<td>1172</td>
<td>6.1% (2.8–12.6%)</td>
<td>83.8</td>
<td>–</td>
</tr>
<tr>
<td>SBRT</td>
<td>21</td>
<td>137</td>
<td>1221</td>
<td>9.6% (6.0–15.1%)</td>
<td>81.3</td>
<td>0.16</td>
</tr>
<tr>
<td>CRT</td>
<td>13</td>
<td>172</td>
<td>1023</td>
<td>20% (13.2–29.2%)</td>
<td>82.8</td>
<td>0.003</td>
</tr>
<tr>
<td>Late toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>7</td>
<td>6</td>
<td>342</td>
<td>2.5% (1.3–4.9%)</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>SBRT</td>
<td>6</td>
<td>17</td>
<td>387</td>
<td>6.4% (4.0–10.1%)</td>
<td>50.6</td>
<td>0.011</td>
</tr>
<tr>
<td>CRT</td>
<td>5</td>
<td>11</td>
<td>293</td>
<td>6.9% (3.9–1.2%)</td>
<td>75.4</td>
<td>0.011</td>
</tr>
</tbody>
</table>
HCC: SBRT vs RFA

- 2004–2012: 224 patients with unresectable HCC treated with RFA or SBRT
 - 161 treated with RFA to 249 tumors
 - 63 treated with SBRT to 83 tumors

- Similar patients and outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>RFA</th>
<th>SBRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from local progression (FFLP) 1 yr</td>
<td>84%</td>
<td>97%</td>
</tr>
<tr>
<td>FFLP 2 yr</td>
<td>80%</td>
<td>84%</td>
</tr>
<tr>
<td>Overall survival 1 yr</td>
<td>70%</td>
<td>74%</td>
</tr>
<tr>
<td>Gr 3+ toxicity</td>
<td>11%</td>
<td>5%</td>
</tr>
</tbody>
</table>

• Larger tumors less likely to be controlled by RFA

• No size dependency for SBRT
HCC BCLC: Where RT fits

Dawson LA et al. Semin Radiat Oncol. 2011;21:241
Phase III Trial of SBRT vs DEB as Bridging to Transplant

• 60 HCC patients, within Milan criteria, listed for transplant planned to be randomized to BED or SBRT (40 - 50Gy in 5#)
 • 16 - DEB (x 2)
 • 13 - SBRT

• Similar efficacy (path CR seen with both)

• Benefits of SBRT:
 • Less re-treatment
 • Fewer inpatient days
 • Lower toxicity
 • Improved QOL

Nugent et al, ASCO GI Symposium, JCO 35 suppl 4S, abstract 223, 2017
HCC Bridge to Transplant RT Series

<table>
<thead>
<tr>
<th>Author</th>
<th>Pts</th>
<th>RT Dose</th>
<th>%OLT</th>
<th>TACE?</th>
<th>Time to OLT</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Connor, 2012¹</td>
<td>10</td>
<td>33–54/3</td>
<td>100%</td>
<td>40%</td>
<td>4 mo</td>
<td>5yr OS 100%</td>
</tr>
<tr>
<td>Katz, 2012²</td>
<td>18</td>
<td>50–55/10</td>
<td>61%</td>
<td>11.1%</td>
<td>6.3 mo</td>
<td>2yr OS 100%</td>
</tr>
<tr>
<td>Bush, 2011³</td>
<td>76</td>
<td>63/15</td>
<td>24%</td>
<td>0</td>
<td>13 mo</td>
<td>3yr OS 70%</td>
</tr>
<tr>
<td>Andolino, 2011⁴</td>
<td>60</td>
<td>CPA:30–48/3</td>
<td>38%</td>
<td>NA</td>
<td>7 mo</td>
<td>2yr PFS 69%</td>
</tr>
<tr>
<td>Sandroussi, 2009⁵</td>
<td>10</td>
<td>33–54/1–6</td>
<td>80%</td>
<td>30%</td>
<td>5 mo</td>
<td>2yr RFS 70%</td>
</tr>
<tr>
<td>Al-Hamad, 2009⁶</td>
<td>1</td>
<td>50/5</td>
<td>100%</td>
<td>0</td>
<td>NA</td>
<td>1yr OS 100%</td>
</tr>
</tbody>
</table>

Add path CR data – from proton RCT, indians and torotnoto OLT

* No local progression, no increased operative morbidity, 50–100% necrosis,
SBRT vs TACE & RFA: Bridge to Transplant

- Over 2007 – 2014, 406 / 594 (68%) HCC transplant patients received bridging therapies
 - RFA 60%, 88% within Milan
 - TACE 24%, 24% within Milan
 - SBRT 9% (if unsuitable for RFA or TACE), 36% within Milan
 - 36 Gy in 6 fractions (quartile range 30 - 40Gy)

Recurrence

Actuarial survival

No increased toxicity at time of transplant

Sapisochin G., LA Dawson, D Grant, Hepatology. 2017
Radiologic & Pathologic Responses to SBRT

- N=23 HCC patients who received SBRT and liver transplant
- Initial HCC volume: 64.6 (range: 2.3 to 232.7) cc
- Volume before transplant: 34.9 (range: 0.4 to 204.2) cc
- Median time to transplant 6 months (2 – 15 months)
- Radiologic RECIST response: 32% PR, 60% SD, 8% PD
- Pathologic median % necrosis: 51% (0-100%)
 - 35% > 85% necrosis
 - 9% 100% necrosis
 - RECIST radiographic response not well correlated with path

Unpublished, 2017
HCC BCLC: Where RT Fits

HCC

Stage 0
PST 0, Child-Pugh A
Very early stage (0)
Single<2cm.
Carcinoma in situ

Stage A-C
PST 0-2, Child-Pugh A-B
Early stage (A)
Single or 3 nodules <3cm, PS 0

Stage D
PST >2, Child-Pugh C
Advanced stage (C)
Portal invasion, N1,M1, PST 1-2

HCC

Intermediate stage (B)
Multinodular, PST 0

End stage (D)

Increased
Associated diseases

Normal
No
Yes

Symptomatic ttc (20%)
Survival<3mo

Curative Treatments (30%)
5-yr survival: 40-70%

Randomized controlled trials (50%)
Median survival 11-20mo

Unsuitable/refractory to TACE
Definitive RT

Unsuitable for resection, transplant or RF
Definitive RT

RT as bridge to transplant

Symptomatic
Low dose RT

Portal invasion
Definitive RT & sorafenib

Randomized trials needed to demonstrate benefit

Liver Transplantation (CLT / LDLT)
PEI/RF
TACE
Sorafenib

Dawson LA et al. Semin Radiat Oncol. 2011;21:241
SBRT post TACE (Korea)

Alabama, Retrospective comparison of TACE +/- SBRT, for HCC > 3cm

Patients (161) Local recurrence Median survival

- 124 TACE 26% 20 mo
- 37 TACE & RT 11% 33 mo

Jacob, HBP 2015
HCC BCLC: Where RT Fits

- **Stage 0**
 - PST 0, Child-Pugh A
 - Very early stage (0)
 - Single < 2cm
 - Carcinoma in situ

- **Stage A-C**
 - PST 0-2, Child-Pugh A-B
 - Early stage (A)
 - Single or 3 nodules < 3cm, PS 0
 - Intermediate stage (B)
 - Multinodular, PST 0
 - Advanced stage (C)
 - Portal invasion, N1,M1, PST 1-2

- **Stage D**
 - PST >2, Child-Pugh C
 - End stage (D)

- **Curative Treatments** (30%)
 - Resection
 - Liver Transplantation (CLT / LDLT)
 - PEI/RF
 - 5-yr survival: 40-70%

- **Randomized controlled trials** (50%)
 - TACE
 - Median survival 11-20mo

- **Symptomatic ttc (20%)**
 - Sorafenib
 - Survival < 3mo

- **Where RT fits**
 - Unsuitable for resection, transplant or RF
 - Definitive RT
 - RT as bridge to transplant
 - Unsuitable/refractory to TACE
 - Definitive RT
 - Symptomatic
 - Low dose RT
 - Portal invasion
 - Definitive RT & sorafenib
 - Randomized trials needed to demonstrate benefit

Dawson LA et al. Semin Radiat Oncol. 2011;21:241
Korean series of HCC PVTT, n=281

- Prognostic factors for overall survival on MVA:
 - ECOG performance status, CP
 - Degree of PVTT: main branch, complete occlusion
 - Tumor size, multiplicity, LN metastases
 - Response to RT

Yu, Park et al. JKMS 28 (8), 10167-1022, 2011
PMH Phase I/II HCC Study

- 102 HCC patients, unsuitable for transplant, resection, RFA or TACE
- Hep B: Hep C: alcohol 39%: 40%: 25%
- Prior therapies 50%
- Portal vein HCC thrombosis 55%
- Extrahepatic disease 12%
- Size: median 10 cm (2–43 cm)
- Median dose 36 Gy in 6# (7.5–54 Gy)
- 6 fractions, every other day

Survival

- 1 year local control 87% (95% CI 78–93%)
- Median survival 17 months

Median survival
- No thrombosis 20.5 mo (95% CI 12.9, 36.9)
- Thrombosis 11.0 mo (95% CI 11.3, NA)

Median survival
- Trial 1 11.1 months (95% CI 7.4-19.0)
- Trial 2 25.5 months (95% CI 11.3, NA)

Bujold, …Dawson, JCO April 2013
RTOG 1112 Phase III Study

Randomized phase III study
Sample size: 368
Primary endpoint: overall survival (10.5 → 14.5 mo)
Case

baseline
Case

3 months post SBRT
Case

Sustained normalization of AFP at ~12 months
Conclusions

• HCC is a radiosensitive tumor
• SBRT is ready for prime time in selected HCC patients
 – SBRT outcomes best in CP A, small (< 8 cm) HCC
 – HCC with vascular invasion, if not suitable for other treatments

• Rationale for trials of SBRT with regional or systemic therapies
• Need for improved evidence regarding SBRT for HCC
 – Randomized trials are ongoing
 – International collaborations, propensity matching and large databases are recommended in addition to phase III trials
Acknowledgements

Pablo Munoz
Aisling Barry
Andrew McPartlin
Sam Haddad
Monique Youl
Carol Haddad
Alexis Bujold
Anand Swaminath
Charles Cho
Mark Lee
Regina Tse
Maria Hawkins
John Kim
Anthony Brade
Rob Dinniwell
Jim Brierley
Rebecca Wong
Jolie Ringash
Bernard Cummings

PMH Foundation-Gerry Ruby
Elekta, Bayer, RMP

Kristy Brock
Mike Velec
Tim Craig
Jean Pierre Bissonnette
David Jaffray
Doug Moseley
Catherine Coolens
Mike Sharpe
Teo Stanescu
Tom Purdie
Kawalpreet Singh
Debbie Tsuji
Andrea Marshall

Jen Knox

PMH HCC tumor boards
All patients & referring MDs